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Problem Statement

This document describes ongoing research for the formulation, analysis and
implementation of a programmable device, termed Quantum Function Evaluator (QFE),
that uses quantum state propagation as a paradigm for computing objects of a class I of
functions herein referred to as the computable class. The proposed research is divided
into three phases: Formulation, Evaluation and Implementation. We will discuss an
outline of the first phase in the next sections.

QOutline of formulation Phase

Over a period of several years, Kohn and Nerode have conducted joint and independent
research to explore formal methods in Hybrid System Theories [1], [2], [3], [4], [5], [6],
[7] to determine effective computational procedures for generating control laws in a
variety of application domains. The quantum computing paradigm and its possible
1mplementatxon proposed for this research effort, constitute a significant extension of the
results in our early efforts. This outline provides a brief synopsis of our proposed
paradigm and a preliminary sketch of a possible implementation architecture. The
Formulation phase of our study is composed of two major tasks: the detailed specification
of the proposed paradigm and the detailed specification of an implementation
architecture. We will outline the major features of these two items next.

Paradigm

The main aspects of our proposed paradigm are summarized in Figure 1. The proposed
computational paradigm is composed of seven sequential steps. We outline their
functionality next.

Input Function: Each Input Function is either a map of the foqn:
f:8 % - xX§; = D‘
where S,, i =1, ..., N and D are finite subsets of the naturals of the form:
= {0, -, N }

D = {0, -+, Ny}

or a solution of an iterative process of the form:




yiou = fyh o yk),i=1 ..k
with
fi:S*> S,8={01, .. N}
Let p be the natural number defined by:
p = max{{N;,i= 1, ... N}, Ny}

Then, we can express f by the encoding:

F:[01,..,p"] = [0, 1, ...p]

N-1
For x = y.n,-p*"

s=0

f(n,, ..., Ny, ), If defined
Fx) = {0 T 0o
0 QOtherwise

Input Function

Continualization

Finite Hilbert Expansion

V ariational Model

Quantization

Realization

Computation

Figure 1. Quantum Computing Paradigm

¢y




Thus, the encoding is a discrete function with domain on certain points of the real line,
taking values in a subset of points of the real line coinciding with the values in the range
of f and mapping to 0 any encoding x that corresponds to a tuple not in the domain of f.

The central objective behind our paradigm is to find effective and fast means to compute
discrete finite-valued functions via Quantum Approximations to their encoding. We will
characterize the nature of these approximations later on. We conclude the overview of the

Input Function element of our paradigm with a formal definition of the class I of
computable functions.

The class I of computable input functions is defined as follows:

(i) I contains all the functions encodable in one step as above.

G) If {f,, . fx, i : §;X = XSy = Sy,,, Kfinite, S, = {I, .., N;, N, finite }}
is a subset of I, so is their direct sum: f, @ -+ @ f : S, X =+ XSy = Sy,

(iii) I contains the projection functions:

p:S X = XSy =S, p (0, .., 0y, .., ny) =0,

G {f, - fe. £ 0 8, X - xSy = Sy, K finite, S, ={1, .., N;, N, , finite }}
is a subset of I and g:SX, = Sy, is in I, so is the composition:
g(f,, -, f): Sy X = XSy = Sy,

(v) If for each ne N, g: Nx§x - xS =N is in I so is
min{n, g(n,n,, -, ng) = O}.

(vi) If g: N XS, — Sy is in I, then the family of functions,
{f: NXS x -+ xS¢ = Sg.p, f(n+1, 0y5., 0 ) = g(nf(n,0y, oo nk))} is in I.

(vii) Any function constructed by the finite application of (i)-(vi) is in L

We note that the defining characteristic of I is that its elements are either an encoding or
can be transformed into an encoding via finite number of steps (ii)- (vii) above. We
conclude the outline of the input function with the following observation: although the
class I of computable functions I includes only completely specified functions, it can be
extended to a larger class which include discrete partially specified functions (relations).
We will discuss this extension in a future report.

Continualization: We can complete the encoding function F into a step function ® with
the following identity:

o :[O, p") —>[O, p"™)

@
®(y) = F(x), foreachy, ye[x, x+1), x E{O, ---,PN'I}



Figure 2 illustrates this identity for the encoding of the function given in Table 1. We

refer to the process of constructing @ as Continualization. With some needed

modifications, this continualization process can be extended to discrete functions that are
specified as solutions of iterations of the form:

Table 1.
ng| ny f X F
0 0 2 0 2
0| 1 1 1 1
0 2 1 2 1
1] 0 0 3 0
1 1 2 4 2
1 2 2 5 2
2 0 1 6 1
2 1 0 7 0
212 1o 8 0
Original Function Encoding
D
A

| i | 1 i } L | — >
1 2 3 4 5 6 7 8

Step Function

Figure 2. Continualization of a function

Zk+l = g(zk’ k)
with 3)
Z e S", S= {0, ..., N, N finite} for each k, k an integer




Following Kushner and Clark [8], the encoding and continualization of a process of the
form of (3) leads to a differential equation of the form of (4) together with a sampling
rule of the form of (5):

x(t)= G(x(t), t) + B(t) (4)

G(, t)= continualized version of g(-, k), t e [kA, (k+1)A), ke N 5)

and B(t) is a 'convergence' function satisfying the following conditions:
B is bounded, and B(t) goes to zero as t — oo quadratically. Under general conditions, one
can show [9] that particular solutions of (4) are asymptotically stable in the sense of

Lyapunov. In (5), A is a scaling parameter chosen to transform the iteration variable k
into the time variable t.

Finite Hilbert Expansion: The continualized functions, appearing in (1) or (4) may be
expanded in a discrete Hilbert space 7, in terms of an orthogonal basis set such as the set

of p-valued Chrestenton functions. The general form of a Chrestenton basis function is
given below.

Chrestenton function: ¢@’(x) = e:)(p(Z£ i ZN_-;J.(N-I-s)'xs]
p =

L e N-1, 1-s N-1 -5
WIth.] = zszo.]s ) pN 1 » X= Zs=0xs ’ pN l

For the sake of simplicity, we will continue our discussion here under the assumption that
the selected bases are the Chrestenton functions, although during the study of tunneling
as a mechanism for implementing quantum oracles we may need to switch to other
bases.

Let B, = {(p" | @*: [O,pN"] - [O,p""] , k=0, -, p" -1} be an orthogonal basis for
Y, That is, I¢k(x)-¢1(x)dx = c-§,, for each k, 1 in {O, v Y -1}. The function
F can be expanded in terms of B as follows:

(x) = Y B¢ (x) ©

xef0.p}"

with

T0(x)-5*(x)-dx
B.= °

N

Tot ()7 (9-dx




We note that if we know the spectrum {ﬁk} We can easily compute ®, via (1), extract
the encoding F from it and from F determine the original function f. However even for
functions of more than academic interest, the number of terms in the spectrum runs in the
range of 105 to 1012, The central idea, in this regard, is that we can find very close
approximations to this evaluation by a hardware quantum device, which we will discuss
in the next section. For the moment, in this section, we continue with the description of
the paradigm.

Variational Model: Given a computational process to be carried out, expressed in the
form of the differential equation (4), we want to formulate the computation of the
solution x(t), as a variational problem. Our purpose is to proceed from this to obtain a
quantum mechanical "program " for computing the solution. For the purposes of this
report, we will describe the variational formulation formally. Mathematical rigor will
follow in future reports.

The variational formulation is of the form:
minjL(x, %, £)-dt )

where L known, as the lagrangian function, is chosen so that for specific boundary
conditions the solutions of (7) and (4) coincide. For the purposes of our procedure we
assume that L is three times continuously differentiable in its arguments. We now
proceed to describe how L is determined from the function G, constructed earlier.
Towards this objective we write the necessary conditions for optimality in (7), The Euler
Lagrange conditions. They are expressed by the following second order differential
equation:

xL,, + XL, +L,-L =0 ®)
Here and in the derivations that follow subindices indicate partial derivatives.

Differentiating (4) with respect to t, to obtain a definition for X, replacing in (8), and

differentiating the result with respect to X, we obtain, after some algebra, the following
partial differential equation :

Liw + Gulgy + XLy + (XGx + G, +Bt)qu‘(i =0 ®

Let
q(x, x, t) = L,(x, %, t) (10)

In terms of q, (9) takes the form,

q + G + %q, + (XG, + G, + B,)g, = 0 (11)

That is, q satisfies a linear hyperbolic equation, whose solution can be computed by the
method of characteristics ([10]). Once a solution for q is obtained L can be determined
from (10) by a double quadrature. In summary, given (4) we construct by the procedure
sketched above the corresponding lagrangian.




Quantization: In order to quantize the program described by (7), one introduces the
canonical conjugate variables: generalized position and momentum [12]. In the canonical
Quantization these are chosen as follows: position variable, representing the position
operator, is represented by x, and the momentum variable is chosen as:

p=1L; (12)
The components of x, p satisfy the canonical commutation relations:
[xe.p] =18, k1= 1,..,N (13)

Next, we define the Hamiltonian of the system as follows:

H(x’ P)= Zpk' X, - L (14)

The equation of motion of the system representing the program to be executed is then the
Schédinger equation given by :

ih%|\?(t)) = H(x, %5‘-9;) | (1)) 15)

Realization: Assume that a physical system, the hardware, is available to us. This system
is characterized by the Hamiltonian operator H;. The realization step consists in

engineering a field Hamiltonian H; such that the hardware, when interacting with this
field satisfies the following condition:
H, + H; - H| < ¢ (16)

where | - | denotes a suitably selected operator norm and £ is an engineering parameter
chosen to satisfy precision requirements for the computation.

The general idea is that the discrete spectrum of the composite Hamiltonian H, + H;

approximates the spectrum of the function or process being computed (see (6) above).
Precisely, we will devote our next report to prove the following result:

"Let

{A- k=1, ..., N} be a subset of the eigenvalues of H, + H; with corresponding
eigenvectors {¥, k= 1, .., N}:

(H, + He ) [¥y) = 4J¥E)
then

A - B < &4
and




ﬂ(p“(x)-‘l’k(x)fdx <€
0
where @* is a Chrestenton function”

Thus computing a discrete function or a discrete process can be approximated by exciting
the hardware system appropriately and reading the resulting spectrum.

Computation: The computation, to a large extent, consists in simulating the system
characterized by H, + H, using the hardware characterized by H,, and excited by the
field whose Hamiltonian is H;. Our research about computation is geared towards

developing an effective translator that converts an input function or process of the class I
into a Hamiltonian operator H and a resolution element that extracts the excitation

Hamiltonian H,. Our long term objectives are to design and implement a prototype
system that operates according to the paradigm outlined in this section.

Transducer j—ppi | Read-out

+ [

Frequency
Control

Coherent Memory

d

Figure 3. Functional Architecture for Quantum Computing




Architecture

In this section we propose a preliminary design of an architecture that implements the
paradigm presented in the previous section. A functional model of our proposed
architecture is depicted in Figure 3. We will next discuss briefly the functionality of the
elements composing our proposed architecture:

Input Function - Given a discrete function or process to be computed, this element
implements the compilation process; thatis, it determines the excitation Hamiltonian,
H,, which encodes the function or process . This is a symbolic computation whose steps
are carried out following the paradigm described in the previous section. These steps can
be described by an iterative process such as (3) so in principle the compilation process

could be carried out by the architecture itself. We will explore the mechanization of the
compilation process in this direction.

Excitation Generator - This is a device that realizes physically the field excitation
encoded in H,. That is, the excitation generator converts a description of the

computation into a physical implementation . The idea is for this device to address each
individual particle of the quantum process described below and to excite them according
to the desired state behavior dictated by:

ih—aa—t|‘1’(t)) = (H, + Hf)(x, %5‘7—)() [E(1))

Our research in this area will be focused on the development of a mechanization process

for realizing this functionality. We will consider two alternatives: optical or particle
(electron) excitation. A more detailed discussion of these two alternatives will be
provided in our next report.

Quantum Processor - This is the device which actually carries the computation. Without
excitation, it is a realization of the Hamiltonian H,. After excitation it is a realization of

H = H; + H;. We will provide next an abstracted model of the physical characteristics
of the Quantum Processor.

The Quantum Processor is an array of identical particles assembled into a regular lattice.
For the purposes of discussion we will consider a two-dimensional lattice. A later report
will be devoted to the formulation of the physical characteristics of the lattice; in this

report we will be concerned only with the formulation of some of its computational
behavior.

A diagram of the Quantum Processor is shown in Figure 4. The device is composed of
two elements: the computational lattice of particles and the field excitation device. From
a computational point of view each particle which is allocated to a node in the lattice, can
be represented as a non-deterministic, two-level state automaton, and an interface
function called Input selector function as shown in Figure 5. We proceed to describe their
functionality next.

In the Lower Automaton, the block labeled 'State transition’ in figure 5 characterizes the
programmable discrete spectrum of the particle. The states of the automaton represent
energy levels, and edges represent allowable energy transitions. This is illustrated in
Figure 6 below. .




1_1

o | ﬁsaqﬁi
L b ) S Nl N S N
b O e
ol i o )

EEEoosncs
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=38 Quantum Computational
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I Quantum forward bond
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Figure 4. Quantum Processor
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mrmrer—
Function > — . am —
1 Transitipn Selegor |
[E—
I |
I State transition !
| |
t { Current Statel-—— |
] i

Lower Automaton

Figure 5. Quantum Particle
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In Figure 6, the energy levels correspond to eigenvalues ( or sets of eigenvalues forming a
band grouped together as a single eigenstate) of the corresponding Hamiltonian. The
edges correspond to energy transitions. Edges pointing up are driven by excitation: that
is, the transition is effected by absorption of energy from the excitation. Edges pointing
down correspond to relaxation effects: the particle releases energy of the appropriate
frequency either to neighborhood particles or to the field (see Figure 7).

A
A
i X
70}
e
20
Q
3
A 4
\ 4 \ J
T A 4
Ground Spectrum (single aggregated state)

Energy Level

——— Allowable Transition

Figure 6. State energy transition example
A,
kv, = 4, - 4

Figure 7. A state transition
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In Figure 7, 4, and A, are energy levels, and the transition between them is driven by
excitation energy to frequency v,,. Note from Figure 5 that energy can come to the

particle either by interaction with the other particles or from the external excitation.
Relaxation transitions are similar.

The state transition in the lower level automaton is controlled by the mixing state
probability density transition computed by the Upper Level Automaton. State transition in
this automaton is called 'probability transition' in Figure 5.

The mechanism that implements commands issued by the upper level automaton in the
lower level automaton is called Transition Selector in Figure 5. We will explain its
functionality next. For this we need some preliminary definitions.

Let S= {I‘Pk(t)), k e N, N, ﬁnite} be the states of the lower automaton in each

particle. the let A be the update time of the particle. The update time of the particle is
the determined to be larger than 10 times the maximum relaxation time of any of the
state transitions in the lower automaton. The state of the lower level automaton in each

interval [t, t + A) is a Chattering Combination of the elements of S. A Chattering

Combination of the set of functions in the interval is a function |‘I‘(t)) defined as
follows:

¥,(7) Te 1,0
Y. (1) te I (1)

|¥(r)y=1 17
¥,,(1) e 1, (0
¥, () e,
where L, (t), j, € N, is a semi-open interval in [t, t +A) :
k-1 k
I ()= [t+ZAjl(t), t+ZAj|(t)) (18)
1=0 1=0

We note from (17) that the composite state |¥(7)) is constructed by 'stitching’ together

the pure states in S. The time spent in pure state “ij> € S, A, (1) is a function of the
characteristic excitation or relaxation times associated with the state [11]. We note that

;Ajk(t) = A (19)
and, if we define
A (t
()= 22 @)
then equatiori (19) can be written as
;ah () =1 21)

Sagent Corp. 12



The set of all Chattering Combinations of S in the interval [t, t + A) is denoted by

S(t,t + A). The union of these sets for all time is denoted by S. Now we can specify the
operation of the Transition Selector in the lower automaton of our particle model. For
each interval [t, t + A), the Transition Selector receives a command from the upper

level automaton, which consists of an ordered tuple of coefficients <ajk(t), k€N, )

satisfying (21), and then it computes the mixed state of the particle, |'\¥(t)), according to

(17). The state of the lattice is composed of the states of each of its particles. We will see
shortly that the Chattering Coefficients have the interpretation of state occupancy
probabilities. To demonstrate that, we need to discuss the dynamic structure of the upper
level automaton.

In general, there is not enough information to say that the lattice or any of its particles is
characterized by a specific state function. The best we can do, in order to describe the

computation, is to give a probabilistic description. In the quantum formalism, this
description is referred to as the probability density description [12].

Let S be the set of primitive states of the lower level automaton. Let p; be the
probability that the particle is in state ¥, € S. The probability density operator [13], p,
is defined by

p(t) = zpj I\P,(t)quj(t)' (22)

By differentiating (22) and using (15), after some algebra, we obtain an (operator)
differential equation for p :

ih%p:H-p-p-H (23)

The operator is termed the commutator and is written as [H, p]. Thus
., 0
i 5P = [H, p] (24)

Given an observable characterized by, say, operator C, the associated observed quantity,
denoted by (C), is given by the expectation of C relative to p :

(C) = trace(p-C) (25)
Equation (24) characterizes the computation carried out by the upper level automaton.
Equation (25) characterizes the Transducer of our architecture (see Figure 3). We will
devote a future report to discussion of this device in detail.
Notice that the state function, computed by the lower level automaton, could be given as

a linear combination of the states in S. We chose to model it as a Chattering
Combination, which turns out to be equivalent in a specific sense (as we will show

Sagent Corp. 13



Notice that the state function, computed by the lower level automaton, could be given as
a linear combination of the states in S. We chose to model it as a Chattering
Combination, which turns out to be equivalent in a specific sense (as we will show
shortly) because in this form it will allow us to formulate the sequence of excitation
steps (realized by the excitation element, see Figures 4 and 5). To a large extent,
programming the quantum processor is tantamount to determining this sequence. To
justify this statement, we must explain the sense in which the Chattering and Linear State
Combinations are equivalent, because an extension of this result to Excitation
Hamiltonians will provide us with a strategy for implementing excitation sequencing .

The equivalence between Linear and Chattering Combinations of state functions from a
given set S is established in the following version of the Chattering Lemma [14]:

Chattering Lemma. Let S= {|¥(!)), k € N,, N, finite] and let § be the set of
chattering combinations of S. Let &, & real and positive be given. There exist state

By

functions I@).) € §, defined for each tuple {a,, v O 0y 20, Zal = 1}, such that
1=1

max <E€ (26)

j {lej(f» - iamr»} .dt

forall (t, ..., o, ).

The proof of this lemma, while not difficult, requires extensive manipulations. We will
provide it in a companion report devoted exclusively to the chattering aspects of our
proposed architecture. Notice that the lemma says that every chattering combination of
state functions of the form of (17) on a set S, can be realized as a linear combination of
elements from S with an arbitrary small error in the integral sense (see (26)). We also
have the fact that under strong continuity assumptions on the state functions the converse
of the lemma is also true. By choosing the boundary conditions in our lattice model
appropriately, this assumption is not limiting .

Now we proceed to describe the functionality of the Input selector function. This
function models the interaction of the particle with the excitation and with the other
particles in the lattice. Some examples of possible particle interaction are shown in Figure
8. For simplicity, only nearest neighboring interactions are shown, but the model is not
limited to these cases. The central task implemented by the input selector function is to
establish on one hand the interaction of a particle with the other particles in the lattice and
on the other hand the interaction of a particle with the excitation field in order to

characterize these two tasks we look more closely at the excitation field Hamiltonian H;.

Locally, centered in a particle, it is convenient to write H, as the sum of two terms, the
first, H,, corresponding to the interaction of the particle with the excitation, and the

second H, corresponding to the interaction of the particle with its internal energy and
with the interaction energies of the other particles in the lattice. Thus we write

H,=H, + H @7
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Figure 8. Some examples of particle interaction

Under general assumptions about the lattice, the interaction Hamiltonian H, for given
particle can be written as

H|¥)= gy(H},... HY)P) (28)

where H for each j is the interaction Hamiltonian of the given particle with its
'neighboring' particle ij , and g, is the neighborhood function at the current state of the
particle, . The neighborhood function represents the local (at the current state ¥)
structure of interaction of the particles in the lattice. This structure can be determined by
building the lagrangian associated with the lattice and go to the procedure of quantization
that we discussed earlier. We will carry out this task once the details of the physics of the
lattice are defined in the evaluation phase. The approach consist in defining potentials to
characterize interaction. For example, a dipole (particle-to-particle) interaction between a

particle located in coordinates x, y of the lattice may be characterized by a potential V of
the form:

V(xy,t) = dx-,(t)F(—f;'

where d,_, is a relaxation function.
For the purposes of analysis and also to determine a detailed formulation of the

realization step in our paradigm, it is convenient to assume that a finite set of primitive
excitation Hamiltonians E = {H‘e ,i=1,.., ne} can be realized and that implementation
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of our excitation is carried out by chattering among the elements of E over the update
interval A . Specifically,

( Hy|¥(r)) te I (1)

He|[¥(7) T € I, (1)

H,|¥(7)) = | : (29)
Hy|¥(r)) e I _(t)

| Ho|¥(7)) e L (1)

Where the sets Iij(t) are defined by expression (18). This type of probabilistic resonance

is central to our proposed implementation of the quantum processor. The idea is to induce
a probability distribution p on the states of the particles on the lattice so that the
realization criterion is satisfied.

Thus a computation in the lattice is a propagating probabilistic wave-train in which the
state of each particle is the probability distribution of its pure states. This is illustrated in
Figure 9. Specifically the lattice is at an initial probabilistic state, the programmed

excitation is impinged and after a transient period & has elapsed, the read out period, the
transducer is activated to effect the eigen-value observation. After the observation has
been made, the computation process is complete. If the results are not satisfactory the
computation is started again from the initial probabilistic state and the read-out period is

extended to & > & . This extension period cannot be extended arbitrarily because the

thermal relaxation mechanisms in the lattice will induce eventually de goherence, thatis,
the loss of the probabilistic resonance described above.

Let {E‘} be the discrete spectrum of the physical Hamiltonian H,. Then it can be shown
using (24), that the transition probability p, ; from eigenstate i to eigenstate j satisfies,

. 0
lha.pi](t)= (E| - EJ). pij+ [Hf’p]ij (30)

In [11], it is shown that if the system is at state |‘I’J> at time t= »0, then the presence of the
relaxation Hamiltonian (28) causes the corresponding probability density term p,; to
decay exponentially with time. For small values of t, p; is the largest term in the matrix

representation of the probability density operator. Assuming no excitation, and using (30)
this term satisfies the following equation:

d

ih'ét—pii = ;((Hl)jkpkj - ij(Hl)kj) (3D
with '

.. 0 .

ih=p, = (E,- E) py - py-(H), foriz] 32)
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The solution of (31) and (32) for P; is given by:
py(t)= et (33)

where £ is a relaxation time that depends on the physical characteristics of the lattice.
Thus the effect of the inter particle excitation Hamiltonian is to randomize the state
transitions in each particle. The computation described above will be corrupted by this

effect. Therefore, the read-out period { must be chosen so that this effect is acceptable;

this means { << &. We will use this bound in our design specifications of the quantum
processor and also, in our computability analysis.

Forward Wave Direction

9N\ (o (O "\
QI‘J
N
&—® Qv
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.
7

Backwards Wave Direction

Figure 9. Wave Propagation
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Conclusions

In this paper we present a preliminary design of a hardware architecture for computing
initial segments of primitive recursive functions and iterative processes. The formulation
of the architecture is based in a paradigm which proposes a procedure for 1- encoding a
function or process and 2- Carry out the computation. The paradigm is firmly rooted in
the formalism of quantum mechanics. We propose as our representation of the
architecture a generic regular multiparticle, two-dimensional lattice. This lattice is a
model of crystal structures that in principle, can be produced in the lab today.
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FOREWORD

This contract was a continuation of earlier contracts for the Army Center of
Excellence in Mathematical Sciences established in January 1986. The Mathematical
Sciences Institute provided a center of focus of the continuation of development of
mathematics in the traditional areas, and more importantly, the extension of
research into new areas with the development of new directions for mathematics.

The philosophy behind a center for mathematical research is that only a center has
the capacity to meet cross-disciplinary challenges which must combine talents of
computer scientist, mathematicians, scientists, and engineers. A center can be used
to create a positive national climate for the development of an entire subject by
providing a forum of interaction to create a national community of researchers. A
center with flexible funding and insightful leadership can identify and nurture
emerging research areas which have high risk of failure but high potential of return.
The Mathematical Sciences Institute has provided this leadership and flexibility to
meet the changes in mathematical science as technology and knowledge expands.

The proposal maintained the Mathematical Sciences Institute as the overall center
for administration and program direction, with the responsibility to oversee three
smaller Centers of Excellence in the Mathematical Sciences for: Nonlinear Analysis,
Stochastic Analysis, and Symbolic Methods in Algorithmic Mathematics. Each of
these centers pursued advancements in their areas but also coordinated and
collaborated between centers. This model was extremely successful. And, as
funding levels changed it was possible to allocate available resources to those
programs exhibiting the greatest potential. During the over ten years of operations,
the Mathematical Sciences Institute proved the value of such centers and gained an
international reputation as "the" center for mathematical excellence.
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Final Report
FINAL REPORT (4a & 4b)

Since this contract provided funding for three centers which each addressed a
number of different areas of research, rather than just one distinct line of study, this
report will provide information on the problems studied and results obtamed by
each Center of Excellence.

Center of Excellence in the Mathematical Sciences for Nonlinear Analysis

Statement of the Problems Studied:

Nonlinear analysis is the fundamental mathematical theory describing
complex and nonlinear systems and nonlinear materials. With a new, and correct,
mathematical basis for understanding the interactions of nonlinear waves, the
science of nonlinear and complex materials will proceed more rapidly. Similarly,
the study of phase portraits for dynamical systems and the classification of
trajectories by their asymptotic or chaotic behavior yields invaluable insight into
system behavior, while the study of bifurcation's of dynamical systems and the
development of computation methods brings mathematics to bear on the complex
problems of modern science and engineering.

Mathematical theory alone is not sufficient for today's science. A close
interplay between mathematical theory and advanced computational algorithms is
necessary. Novel and powerful algorithms and computational methods, especially
tailored to the mathematical features of problem difficulties, will be developed.

Pursue the subjects of mathematical analysis, numerical analysis,
development of advanced computational methods, modeling of physical
phenomena and technology transfer. Work on four aspects of nonlinear analysis:
nonlinear waves, dynamical systems, nonlinear materials and high resolution flow
simulation. Stability, bifurcation and transition to chaos are part of the dynamical
systems effort. Modeling of nonlinear material strength included theories of ductile
and brittle failure, leading to plastic and granular flow. The computational methods
focus on high resolution schemes and on the use of parallel computer
architecture's.

Summary of the Mds’c Important Results:

James Glimm, with P. Colella and G. Pucket, showed the dependence of wave
structure on wave impedance. J. Grove and L. Coulter have developed a general
package within the area of piece wise continuous interpolation. B. Plohr and D.
Sharp succeeded in casting the equations governing the elasto-plastic behavior of
real materials in a fully conservative form in the Eulerian frame.




Y. Deng, J. Glimm, Q. Yu, and Y. Wang motivated by structural problems in binding
of protein on DNA, an optimization problem was solved. The objective function
(binding free energy) to be minimized has a very large number of local minima, and
the problem is to find a search algorithm which will find all of these with energy
close to global minimum. The problem was solved efficiently, using (a)
combinatorial methods (b) matrix theory and (c) Monte Carlo search. The later
method alone would have been very inefficient.

J. Grove, with Y. Deng and G. Li< developed a robust version of the front tracker
method suitable on any distributed memory parallel computer. This method uses a
geometric domain decomposition algorithm and has been shown to be up to 90%
efficient in utilization of parallel processors.

J. Grove, with F. Wang, B. Plohr, and D.H. Sharp, developed a numerical method
for the computation in Eulerian coordinates of elasto-plastic flows of materials.
This method combines a conservative Eulerian formulation of the equations of
motion with higher order Godunov methods and front tracking.

B. Plohr discovered a new and fully conservative formulation of plasticity. Such a
conservative form is necessary for treating discontinuous solutions, such as arise in
Riemann problems. Based on the importance of the conservation formulation for
other computations, we expect the conservative formulation of plasticity to be
fundamental. A model of shear bands has been developed which solves in part the
problem of jump conditions across a shear band, following earlier results of Wright
and Walter. Jump conditions are needed to allow front tracking for shear bands.

J. Bramble, X. Zhang, and J. Pasciak have developed a general theory for constructing
preconditioners. The show how to precondition one system by means of a related
(simpler) one. The theory is applied to many different elements useful for
biharmonic problems.

Center of Excellence in the Mathematical Sciences or Stochastic Analysis

Statement of the Problems Studied:

Apply the ideas of probability theory to a wide variety of fields: biology
(ecology, genetics), chemistry, physics (statistical mechanics, field theory, quantum
mechanics), economics, finance, computer and communication networks, and to
mathematics itself (partial differential equations, harmonic analysis, and differential
geometry). Three specific areas of research are conducted:

e Interactions with Partial Differential Equations -- Relationships between
interacting particle systems and measure valued diffusions with nonlinear
p.d.e.'s.
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e Applications to Physics and to Mathematics -- two programs on (a) problems
in probability arising from mathematical physics and (b) applications of
probability to topics in analysis and geometry.

¢ Poisson and Brownian Models -- theory and applications of processes driven
by Brownian motion and Poisson processes. Topics included the theory of
stochastic differential equations and their applications to finance and queuing
theory; external and stable processes as alternatives to Gaussian models; random
sets in economics, inference, and image analysis.

Summary of the Most Important Results:

R. Durrett culminated work, with C. Neuhauser, on particle systems and reaction
diffusion equations. M. Cranston completed work on probabilistic approach to
Martin boundaries on manifolds with ends. H. Kesten obtained a bound for speed of
convergence to the time constant in the first-passage percolation. C. Mueller
showed that blow-up can occur for the heat equation with a certain nonlinear noise
term and showed long-time existence for the wave equation in one and two
dimensions. J.T. Cox and A. Greven completed work on an analysis of the basic
ergodic theory of a class of interacting diffusions.

The relationship between particle systems and nonlinear partial differential
equations was used in work by G. Swindle showing coexistence results for catalysts.
These models of the oxidation of carbon monoxide on catalyst surfaces have been
around for a number of years, but now we have the first results for a model that
shows all three phases: poisoning to al oxygen, poisoning to all carbon monoxide,
and the physically desirable case of coexistence of the two species, which allows the
reaction to occur at a positive rate.

A class of processes known as super processes have been investigated by many
authors. A new insight into the structure of a branching, measure-valued processes
was obtained in a joint work of E.B. Dynkin and A.V. Skorokhod. Tools have been
developed which allow construction explicitly of all such processes.

C. Mueller proved regularity properties for three dimensional wave equations with
nonlinear noise terms.

L. Billera and B. Sturmfels completed their work on iterated fiber polytopes,
establishing a connection between subdivisions and allowable sequences.




Center of Excellence in the Mathematical Sciences for Symbolic Methods in
Algorithmic Mathematics

Statement of the Problems Studied:

The Center emphasizes development of mathematics and algorithms for the
manipulation, simplification, and solution of problems that represent the
mathematical structures symbolically, no matter what branch of mathematics or
science the problem come from, coupled with applications areas in business,
government, and military. Initial areas of concentration are a Groebner Basis
Project and a Symbolic Methods in AI and Computer Science project, with
simultaneous development of other needed areas. The research plan consists of
work in three specific areas:

¢ The Computational Algebra and Mathematics Program -- pursue
optimization of the primary Groebner construction algorithm. Develop an
algebraic theory of piece wise polynomial approximation based on the Bezier-
Bernstein algebra. Address questions surrounding polytopes, splines, and
complexity of Groebner basis computations. In topology determine the
homotopy type of subdivision lattice of a polytope. Research automating
perturbation calculations for dynamical systems.

¢ Mathematics of Al and Concurrency Program -- model Al, computer science,
and physical and engineering science problems in logical systems, and solve
such problems using mathematical logic methods from semantics, syntactics,
model theory, automated deduction. Model (non-statistical) inference based on
incomplete but correct information, to develop algorithms and automated
deduction engines for this purpose, and to use models and software in specific
applications.

* Unification of Symbolic Methods -- emphasize unification of algebraic and
logical methods in symbolic computation. Develop an understanding of the
symbolic-numeric interface, and a base for adding numerical analysis features to
the model. Develop a new model of Hybrid systems, using the variety of talents
in logic, algebra, combinatorics, dynamical systems, and numerical analysis.

Summary of the Most Important Results:

A. Nerode, with P. Broome and J. Lipton, established a mathematical underpinning
for relational programming and with V.S. Subrahmanian, C. Bell, and R. Eng,
developed a compiler for implementing deductive database theory by linear
programming. M. Kalkbrener, with B. Sturmfels, proved that the simplical complex
defined by any initial ideal of prime is pure and strongly connected.

R. Rand, with S. Lubkin, developed mathematical models for the "circumnutation”
phenomenon observed in certain species of plants. These growth movements
involve a circular motion of the stem with a period of about 2 hours. The
mathematical model involves reaction diffusion equations in the cross-section of
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the stem. The research tries to explain observations of biologists relating to the
effect of environmental changes on amplitude and period of oscillation.

L. Tuncel solved very large (up to 13 million variables) linear programming
problems while studying the asymptotic behavior of interior point algorithms for
linear programs. Further study proved that when n is infinite one can still get a
complexity bound on the number of iterations required in terms of smoothness of
the problem and the desired accuracy.

H. Blair, with W.V. Marek and J. Schlipf, established that all hyperarithmetic sets of
atomic formulas are definable as projections onto particular predicates within the
unique stable models of locally stratified logic programs. The result is a concrete
representation theorem that identified a natural subclass of the class of logic
programs with unique stable models previously identified by Marek, Nerode, and
Remmel. H. Blair and M. Bai, developed a non-intuitionistic intensional model
theory for higher-order Horn logic programs based on the extended simply typed
lambda calculus in a manner that extends the notion of Herand models.

A. Nerode designed a game model for distributed computing based on message
passing in OCCAM). The defect in previous universal theories was that the Rabin
theory has a doubly exponential lower bound, and universally regarded as
unfeasible. However, we believed that for problems that occur in practice, this
unfeasibility is absent. Yakhnis and Yakhnis in 1990, found a substantially better
decision method for this calculus, but their account was murky and still too
complicated to apply in practice. A student of Gurevich put their proof into clear
form. Using this as a starting point R. McNaughton found a graph formulation of
the extraction of winning strategies for games. This has been improved by Remmel,
Nerode, and Yakhnis to the point that we can now solve small games by hand and
extract the winning strategies.

J. Underwood defined a new model theory for classical logic which highlights its
connection to intuitionistic logic. This model theory hints at a connection with
parallel computation. There appear to be deep connections with linear logic in the
proof theory as well.

N. Vorobjov constructed several new effective algorithms for basic computational
problems in real algebraic and analytic geometry. An algorithm for finding all
irreducible components of the Zariski-closure of a semialgebraic set obtain, with A.
Galligo, was extended to transcendental varieties defined by polynomial in exponent
equations. The running time of both algorithms is single-exponential in number of
variables.

A. Nerode and W. Kohn developed practical software tools to extract digital control
automata for distributed autonomous systems using a combination of algorithms
from relaxed variational problems, Hamilton-Jacobi-Bellman systems, dynamic
programming, finite dimensional Lie Algebras associated with physical systems,
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relaxed variational calculus for compact convex problems, and algorithms from
Eilenberg for solving implicit equations in Schutsennberger series for finite
automata.

A. Barvinok has shown in the counting of lattice points, that the computation of a
fixed number of the highest coefficients of the Ehrhart polynomial of a convex
integral polytope reduces the polynomial time to the computation of the volume of
faces. This result implies, in particular, that counting integral points in a polytope
of a fixed dimension can be performed in polynomial time. Although the latter
result (which settled and open problem) was obtained earlier by the author, the new
methods gives the best complexity so far.

D. Bridges and C. Calude produced what appears.to be the first rigorous proof of a
folklore result about the non-existence of recursive bounds for the exceptional
values in Blum's Speed-up Theorem.

S. Marcus with V.S. Subrahmanian proved that the problem of updating
(monotonic) deductive databases (both insertions and deletions) has simple, elegant
analogs in nonmonotonic reasoning formalisms including both default and auto-
epistemic logic. Subsequently, they showed that the problem of updating
nonmontonic deductive databases can also be viewed in terms of such analogs.
Thus, nonmonotonic reasoning provide a general declarative framework whereby a
wide variety of database updating problems may be clearly specified.

A. Nerode and W. Kohn developed a physically feasible scheme for quantum
computing. It is based on a new computing paradigm, which encodes programs,
including mixed digital and continuous directly in shaped Schrodinger equation.
This is implemented by an array of quantum devices, in the eigenvalues of
associated operators. The problem is solved by exciting with emitter apparatus
physical array to initial conditions, and is run for what is the equivalent of 1.5
trillion operations, stopped before decoherence makes the results unreadable by
spectrographic methods. There are no non-physically realizable steps in either the
reading in or the reading out processes.

M. Sweedler and L. Taylor developed a technique for computing Groebner bases for
zero dimensional ideals which are the kernals of maps to algebras or modules
where one can compute linear independence. Unlike previous techniques this
method does not require an initial set of generators for the ideal.

M. Stillman with D. Grayson, has implemented the software system Macaulay-2.
More than 60000 lines of code have been written, and much of it is extremely
succinct. Stillman has been mainly responsible for the polynomial and matrix
arithmetic, the faster Groebner basis, resolution, Hilbert function and related
algorithms, and Grayson has been mainly responsible for the presentation of high-
level mathematical concepts and interpreted language.




K. Shirayanagi and M. Sweedler developed the theory and technology for automatic
stabilization of a wide class of algebraic algorithms which are not inherently stable.
For example, the usual form of the Euclidean algorithm for polynomials with
rational or real coefficients is not stable. These techniques also permit the use of
floating point and other inexact computation in order to stabily approximate a large
class of non-inherently stable algorithms. The techniques also enables the
development of a computer algebra system which, like Maple or Mathematica,
allows the expression of algorithms, but unlike other systems also allows the user to
tell the system to stabilize the algorithm.

List of Publications and Technical Reports (4¢)
MSI TECHNICAL REPORTS June 1991 - December 1996

91-57 Estimating The Critical Values of Stochastic Growth
Models
L. Buttel, J.T. Cox and R. Durrett
9 pages
91-58 A Note on Polynomial Reductions
Alyson Reeves and Bernd Sturmfels
5 Pages
91-59 On The Asymptotic Distribution of Large Prime Factors
Peter Donnelly and Geoffrey Grimmett
12 Pages
91-60 Maximal Minors and Their Leading Terms
Bernd Sturmfels and Andrei Zelevinsky
42 Pages
91-61 On The Rate of Convergence of the Nonlinear Galerkin
Methods
Christohe Devulder, Martine Marion and Edriss S. Titi
36 Pages ‘
91-62 Theory Tabeaux
Ian Gent
16 Pages
91-63 A Context For Belief Revision: Normal Logic Programs
W. Marke, A. Nerode and J. Remmel
6 Pages
8
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91-64

91-65

91-66

91-67

91-68

91-69

91-70

92-1

92-2

The Evolution of The Anisotropy Of A Polycrystalline
Aggregate

Ying Zhang and James T. Jenkins

42 Pages

Multigraded Resultants of Sylvester Type
Bernd Sturmfels and Andrei Zelevinsky
1 Pages

Computing Circumscriptive Deductive Databases
Anil Nerode, Raymond T. Ng and V.S. Subrahmanian
11 Pages

Computation and Implementation of Non-Monotonic
Deductive Databases

Colin Bell, Anil Nerode and V.S. Subrahmanian

55 Pages

The Lexicographic Order Isn’t Necessarily The Worst
Alyson A. Reeves
S5 Pages

Competitive Coexistence In A Seasonally Fluctuating
Environment

Toshiyuki Namba

30 Pages

On Branching Numbers of Normal Manifolds
Daniel Ralph ,
16 Pages

Particle Systems and Reaction-Diffusion Equations
Richard Durrett and C. Neuhauser
45 Pages

Computing Circumscriptive Databases, Part I. Theory and
Algortihms
Anil Nerode, Raymond T. Ng and V.S. Subrahmanian
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92-3

92-4

92-5

92-6

92-7

92-8

92-9

92-10

91-11

A Fast Algorithm For Path Integration
Dov Bai
4 Pages

Product Formulas For Sparce Resultants
Paul Pedersen and Bernd Sturmfels
22 Pages

Approximating Oracle Machines For Combinatorial
Optimization

Shmuel Onn

4 Pages

Dynamical Simulation Faculity For Hybrid Systems
Allen Back, John Guckenheimer, and Mark Myers
12 Pages . :

Multigrid Preconditioning For The Biharmonic Direichlet
Problem

M.R. Hanisch

33 Pages

The Expressiveness of Locally Stratified Programs
Howard A. Blair, Wiktor Marek, and John Schlipf
27 Pages

Nontrivial Dynamics In A Driven String With Impact
Nonlinearity

Theo P. Valkering

34 Pages

A Note On The Primal-Dual Affine Scaling Algorithms
Levent Tuncel
11 Pages

On The Convergence of Primal-Dual Interior Point
Methods With Wide Neighborhoods

Levant Tuncel

26 Pages
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91-12

91-13

92-14

92-15

92-16

92-17

92-18

92-19

92-20

Primitive Polynomial Remainder Sequences In
Elimination Theory

Michael Kalkbrener

16 Pages

Generalized Euclidean Algorithm For Computing
Triangular Representation Of Algebraic Varities
Michael Kalkbrener

30 Pages

Initial Complexes Of Prime Ideals
Michael Kalkbrener and Bernd Sturmfels
10 Pages

A Generalized Euclidean Algorithm for Geometry
Theorem Proving

Michael Kalkbrener

25 Pages

Asymptotic Behavior of Excitable Cellular Automata
Richard Durrett and David Griffeath
39 Pages

Fixed-Parameter Tractability And Completeness II: On
Completeness For W[1]

Rod Downey and Michael Fellows

14 Pages :

Fixed-Parameter Intractability II (Extended Abstract)
Rod Downey and Michael Fellows
10 pages

Fixed-Parameter Tractability and Completeness III: Some

Structural Aspects of the W Hierarchy
Rod Downey and Michael Fellows
24 Pages

A Practical Feasible Square Packing Algorithm For Chip
Manufacture In VLSI (In Honor of Anil Nerode’s Sixieth
Birthday)

Wenqui Huang and Moss Sweedler

17 Pages
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92-21

92-22

92-23

92-24

92-25

92-26

92-217

92-28

92-29

The Stable Models Of A Predicate Logic Programl
V. Wiktor Marek, Anil Nerode and Jeffrey Remmel
29 Pages

Exact Formulas For The Plethysms Sz[S(la,b)] And
$12[2(1 2,b)]

J.O. Carbonara, J.B. Remmel and M. Yang

16 Pages

A Classical Type Theory With Tranfinite Types
Garrel Pottinger
10 Pages

Computation of Vector Space Tl For Affine Toric Varieties
Klaus Altmann
23 Pages

Gurevich-Harrington’s Games Defined By Finite Automata
Alexander Yakhnis and Vladimir Yakhnis
27 Pages

Models For Hybrid Systems: Automata, Topologies,
Stability

Anil Nerode and W. Kone

42 Pages

A Multilevel Preconditioner For Domain Decomposition
Boundary Systems

James H. Bramble, Joseph E. Pasciak and Jinchao Xu
12 Pages

The Analysis Of Multigrid Algorithms For Pseudo-
Differential Operators of Order Minus One

James H. Bramble, Zbigniew Leyk and Joseph E. Pasciak
20 Pages

Uniform Convergence Estimates For Multigrid V-Cycle
Algorithms With Less Than Full Elliptic Regularity
James H. Bramble and Joseph E. Pasciak

10 Pages
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92-30

92-31

92-32

92-33

92-34

92-35

92-36

92-37

92-38

A Preconditioned Algorithm For Eigenvector/Eigenvalue
Computation

James H. Bramble and Joseph E. Pasciak

14 Pages

Hybrid Systems Papers for CDC92
J. Guckenheimer, W. Kohn, A. Nerode and A.A. Yakhnis
18 Pages

Low Degree Solutions to Linear Equations With K[X]
Coefficients

M. Kalkbrener, M. Sweedler and L. Taylor

7 Pages

On Irreducible m-Degrees
Rod Downey
4 Pages

Degrees of Inferability

R. Downey, P. Cholak, L. Fortnow, W. Gasarach, E. Kinber,
M. Kummer, S. Kurtz and T. A. Slaman

13 Pages

Every Recursive Boolean Algebra Is Isomorphic To One
With Incomplete Atoms

Rod Downey

16 Pages

Modelling Hybrid Systems as Games
Anil Nerode and Alexander Yakhnis
15 Pages

Some Effectively Infinite Classes of Enumerations
Alexander Yakhnis and Vladimir Yakhnis
31 Pages ‘

Hybrid Games

Alexander Yakhnis and Vladimir Yakhnis
27 Pages
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92-41

92-42

92-43

92-44

92-45

92-46

92-47

On Turning Located Sets
Xiaolin Ge and Anil Nerode
18 Pages

On Extreme Points of Convex Compact Turing Located Sets
Xiaolin Ge and Anil Nerode
16 Pages

There Is No Plus-Capping Degree
Rodney Downey and Steffen Lempp
10 Pages

Finding Irreducible Components of Some Real
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